
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

166

Query Optimization in OODBMS using Query Decomposition

and Query Caching

Atul Thakare

M.E (C.S.E) persuing

Sipna’s COET,

Amravati (M.H) India

aothakare@rediff.com

Prof. Ms. S.S. Dhande

Asso. Professor

CSE Department

Sipna College of Engineering &

Technology,

Amravati (M.H) India

sheetaldhandedandge@gmail.com

Dr. G. R. Bamnote

Professor & H.O.D

CSE Department

P.R.Meghe Institute of Tech. &

Research,

Badnera (M.H) India

Abstract: Query optimization is of great importance for the

performance of databases, especially for the execution of

complex query statements. This paper is based on relatively

newer approach for query optimization in object databases, which

uses query decomposition and cached query results to improve
execution times for a query. Multiple experiments will be

executed to prove the effectiveness of this approach. The two

main areas which will be covered are caching of query results

and maintenance of the consistency of result sets after database

updates.

Keywords: Query Caching, Query Decomposition, Query

Optimization, Stack-Based Approach, Transaction Processing

Stack-Based Query Language, Object Databases, Query
Performance, Query Evaluation.

.

1. INTRODUCTION
In various types of Database Systems (Relational as

well as Object-Oriented), many techniques of query optimization

are available. Few of them are “Pipelining”, “Parallel Execution”,

“Partitioning”, “Indexes”, “Materialized Views”, “Hints” etc. The

one technique which has not been convincingly implemented is
“Query Caching”. Huge performance benefits can be reaped out

of “Query Caching” methodology which will be storing the

cached query and its results. It is quite obvious that the cached

results will provide very high performance benefits over results

that are not cached. When there is a high probability of queries

being repetitive in nature, “Query Caching” will provide
optimum performance. Instead of spending time re-evaluating the

query, the database can directly fetch the results from already

stored cache. The most obvious benefit of “Query Caching” can

be seen in systems where Data Retrieval rate is very high when

compared to Data Manipulation. Data Manipulation can

invalidate the cache results because the inserted/modified/deleted
data can have direct impact on the cached results. The cached

results will be out of sync which will necessitate regeneration of

the cached results. Data Warehousing Systems, Decision Support

Systems, Archival Systems are very good examples of Database

Systems where “Query Caching” can be optimally used because

Data Manipulation will be very low. Conceptually, the cache can

be understood as a two-column table, where one column contains

cached queries in some internal format (e.g. normalized syntactic

query trees), and the second column contains query results.

2. OBJECT ORIENTED DATABASES AND
STACK BASED APPROACH

We are going to experiment & study the results with

query caching and decomposition of queries in object-oriented

databases and by using the stack based approach.

2.1 Stack-Based Approach

Stack-Based Query Language (SBQL) is useful for

the design and implementation of wide range of database
models [1]. SBQL is developed according to the Stack-Based

Architecture (SBA), a conceptual framework for developing

object-oriented query and programming languages [2]. In

SBQL the data is stored in the form of persistent objects and

the collection of data objects is called as Object Store. Hence

adding, deleting or updating information in Object-oriented

Databases is nothing but adding, deleting or updating the

objects. Objects may contain other objects (aggregation) or

references to other objects. Hence the Object-Oriented

Modelling concepts of complex objects, associations between

objects, classes, types, methods, inheritance, dynamic roles,
encapsulation, polymorphism, semi-structured data and other

features are employed in the creation of Object Store Models,

a representation of the database in Object Databases.

2.2 Operators in SBQL
SBQL permits the use of all well-known query

operators such as selection, projection, navigation, path

expressions, join, quantifiers, etc. SBQL has special as and group

as alias operators, apart from binary operators [either of algebraic

or non-algebraic type] [3].

In the evaluation of SBQL queries 2 stack are in use
namely ENVS (Environmental Stack) and QRES (Result Stack).

In the processing of algebraic operators ENVS is not required to

be used [4]. The examples of algebraic operators are Operators

for arithmetic and string comparisons, set-oriented operators,

aggregate functions, auxiliary naming operators, Boolean

operators, etc. In contrast, processing non-algebraic operators
involves operations on ENVS. The examples of non-algebraic

operators are selection (where), projection/navigation and path

expressions (dot), dependent join (join) etc.

2.3 Distinction of SBQL Queries
In contrast to SQL and OQL, SBQL queries can be

easily decomposed into subqueries, down to atomic ones,

connected by unary or binary operators. This property simplifies

implementation. Also decomposed atomic queries along with
query caching plays an important role in query optimization.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

167

3. OBJECT DATABASE MODELS

3.1 Database Store

Fig.1 An example of the AS0 model

In the AS0 object database model all types of store

objects (atomic objects, pointer objects and complex objects) can
be represented by triplets <i, n, v>, as follows:

 Atomic object: <i, n, v> where i is an internal

identifier of the object [Unique Identification number (ID)

assigned by the system], n is an external name assigned to the

object [usually decided by the programmer], and v is a value of

the object (e.g. an integer, a string, etc.)

Pointer (reference) object: <i1, n, i2> where i1 is an ID

of the object, n is its external name, and i2 is an ID of the object

to which I1 or a current object n is referring. Hence value of

object I1 is a reference/address of object I2. As object I1 stores

the reference we say it is a pointer/ reference object [5].
· Aggregation (complex) object: <i, n, T> where i is an ID or

an identifier of the object, n is its external name assigned to the

object at the time of its declaration, and T is a set of objects

comprising the aggregate. Hence unlike atomic or pointer

object, aggregate objects does not contain a single value, but it

contains in itself multiple objects, where each contained object
can be either of atomic or reference or of complex type.

3.2. Complex Objects
An example of a complex objects having three sub-

objects is presented below:

<I5, Emp, {<I6, name, “Poe”>, <I7, sal, 2000>, <I8, worksIn,

I22>}>

Here Emp is an external name of the object, I5 is its

internal identifier, and it is comprised of 3 sub-objects namely

name, sal and worksin. The ID’s of name, sal and worksin objects

are I6, I7 & I8 respectively. Name and sal are atomic objects

having values “Poe” and 2000 respectively whereas worksin is a
pointer object containing an address of object I22. Each object’s

ID is unique & is internal and non-printable[6].

As shown in the next diagram (Fig. 2) there are three

Emp objects and two Dept objects in the database. Each Emp

object represents one employee and contains his/her name &

salary details in name & sal atomic fields (sub-objects) whereas

worksin is the pointer field. Worksin field of each Emp object is

having a reference of a Dept object which contains the

information related to the department in which the employee is

working. This reference in Employee object to the Department

object describes the relationship between Employee and

Department entities (like foreign key relationship in Relational

DBMS). Dept object contains the department name, it’s one or

more locations (branches) held in the atomic fields, and the n

number of employs objects each of them pointing to one

employee working in that department.

Fig. 2 graphical representation of a small database.

3.3. Evaluation of Query

Fig.3 pushing a new section on ENVS to evaluate a

condition.

Let us consider the evaluation of a query “Emp where

(name = ‘poe’ and sal >1000)” by using the environmental stack

ENVS [7]. Initially the base section of the stack contains the

binders to global library procedures, environmental variables,

views, user session objects, stored procedures, functions etc. As

our query contains the table named Emp, the binders for all the

objects of Emp type (I1, I5, I9) will be pushed on the top of the

newly opened section on the stack. The binders of all the objects
referenced by I1, I5, and I9 are also pushed on the stack (I17,

I22). Each object of Emp type represents one row of Emp table

which contains the information of one employee. Similarly each

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

168

row of Dept table is described by each object of Dept type & it

contains information related to one department. One by one all

the three Emp objects (I1, I5, I9) are examined and whichever of

them satisfies the given condition (name = ‘poe’ and sal > 1000),

those will be added to the resultset object. Before the evaluation

of condition for Emp object I1, a new section will be opened on
the stack top, and the interiors of Emp object I1 (binders to name,

sal, address and worksin of Emp Object I1) are pushed onto the

stack. After evaluating the query for object I1, its interiors will be

popped from the top & the next Emp object will be taken for the

examination. Here we are just storing the references to data

objects onto the stack and not the data itself. Secondly we are

bringing only those object references on the stack, which points

to the data required for calculating the result of the query. The

Object binders or references on the stack will provide the means

to access the Objects data (required for evaluating the query).

While evaluating the complex queries large number of

data objects of various types may be required. As discussed

earlier, the complex (nested) query will be decomposed into

number of atomic sub queries [8]. An independent sub query

(present at the last level) will be evaluated first (by using ENVS

if it involves non-algebraic operator/operators) and its result will

be stored in the result stack (QRES) along with the query. This

result will be used in the evaluation of previous level query as

required. The previous level query then along with its calculated

result will be stored into the QRES and the interpreter will move
to its previous level & so on. This simplifies the process of

executing the complex query and at the same time improves the

performance of database system, as the cached queries may form

the part of other complex queries or the cached query may be

resubmitted to database system as it is. Moreover in client-server

architecture, if we keep the cache area on the server side, the

query which is cached on the server side for one user, its results

may be reused for servicing the requests from the same as well as

the other users. Also the query which is being cached for a

particular user in one of his database sessions can be reused for

servicing the same user in his subsequent sessions. [Note:
Volatile cache memory on the client side will lose its contents i.e.

will lose cached queries & its results once the system is put off or

user session ends]. On the other hand as the servers are up and

running almost always, the server side cache arrangement will

behave like persistent cache.

4 PROJECT WORK

Fig. 4. Query optimization steps

4.1. Query Optimization Steps
The scenario of the optimization using cached queries

in query evaluation environment for SBA is as follows (Fig. 4).

1) A user submits a query to a client-side user interface.

2) The user interface system passes it to the parser. The parser

receives it and transforms into a syntactic tree

3) The query syntax tree is then received by static evaluator and

type checker. It checks whether the query is syntactically correct

or not. If not, it will report the errors. It also validates the

tablenames, columnnames, operators, procedure names, function

parameters involved in the query. Hence it will check the query’s

semantics. For this purpose, it will use the Metabase present on

the server side. Metabase is a part of the database system which
contains the Meta information related with the data in the various

objects. This is static evaluation of the various nodes in the query

syntax tree [9].

4) This type checked and statically evaluated query tree is then

sent to the query normaliser which reconstructs the query

according to the rules of normalization. This normalised query is

then send to the query optimizer. All these components query

parser, query type checker, query normaliser, query optimizer

and query interpreter are employed on the client side system.

5) The cache optimizer rewrites the received normalized query

using particular strategies like query decomposition. Each
decomposed part of the complex query is send to the server.

Server checks whether the received sub query is already cached

or not. If sub query is present in cache, the Unique Identification

number of the entry in cache which corresponds to the result of

the given subquery is dispatched to the optimizer on the client

side. Optimizer replaces (rewrites) the subquery tree of the query
tree by a node containing that unique identification number. This

is for maximum reuse of the cached queries. This rewriting will

generate the best evaluation plan which promises to give the best

performance & having a least cost in terms of time and storage.

6) The optimized query evaluation plan is then sent to query

interpreter.

7) The plan is executed by the query interpreter [10].

4.2. Query Caching
Once the evaluation plan is executed successfully, the

query is cached on the server side in pair <query, result>.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

169

Following that the calculated result of the query is send to the

client user who has submitted the query.

When the same query / a subquery (already stored with

its result in server side cache) is submitted by the same or other

user, after parsing, type checking and normalization of the query,

optimizer sends the query to the server side query cache manager.
Query cache manager searches for the query in the query cache

registry and if found there will return the unique identification

number (UIN) of the corresponding result to the client, thus

avoiding the recalculation of previously stored result. Using this

UIN, query interpreter (on the client system) can fetch the stored

result of the query directly from the server.

If the query is not found in query cache registry, query

cache manager will send a message to an optimizer (on the client

system) indicating that a query is not cached and hence its result

needs to be calculated. Optimizer then does not rewrite the query

i.e. does not reconstruct a parse tree. That part of the query will
be then calculated by the query interpreter at runtime using

runtime ENVS (Environmental Stack) and runtime QRES (Result

Stack) [11].

Description of few components on server side:

Query Cache Manager – This is a program running in

the server and whose job is to check the Query Cache Registry
and figure out if the query is cached. The Query Optimizer with

pass a normalized query (or normalised inner sub-query) to the

Query Cache Manager.

Query Cache Registry – This contains all the cached queries

along with the results.

CACHE MEMORY before executing a query “(emp

where name = Poe and sal > 20000).contactno,email”:

When we Execute a query “(emp where name = Poe and sal >

20000).contactno, email” for the first time, It takes 108221

microsec as the query result is calculated. In this case, disk is
accessed for fetching the data from the data files. The query

along with it’s result is stored in cache memory.

CACHE MEMORY after executing a query “(emp where name =

Poe and sal > 20000).contactno,email”:

When we reexecute the query “(emp where name = Poe

and sal > 20000).contactno, email” result comes from

cache memory and the time taken is 1477 microsec

In this case the disk is not accessed. And as we shown by

the result the time taken by the query has been reduced

considerably. We have experimented with number of such

queries written in SBQL syntax and found that the time

taken by the query get’s reduced to approx. 1/5 to 1/100

times in most of the queries. We also observed that with

the increase in the size of the database this difference

keeps on growing. As the time required to fetch the result

from the cache memory is apprx. Constant and the time

required to calculate the resultset for the query by moving

through the records in the database files will keep

increasing (with sequential access) with the increase in the

number of records in the database tables / increase in the

size of data in datafiles. Even if query is more complex i.e.

contains lots of aggregate functions and nested statements

involving number of tables (hence involving costly join

operations), then also the difference between time taken to

return the previously calculated result and time taken to

calculate the result of the query is large and keeps

increasing with the complexity of the query.

4.3. Query Normalization
To prevent from placing in the cache, queries with

different textual forms but the same semantic meaning (& hence

also will generate the same result), several query text

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

170

normalization methods will be used. Hence if a query is already

stored in the cached with its result, all semantically equivalent

queries will make reuse of the stored result, as all those queries

will be mapped with the already stored query (due to

normalization) [12].

Examples of few techniques useful in the process of
normalization are:

 a) Alphabetical ordering of operands

 b) Unification of Auxiliary Names

 c) Ordering based on column names (in the order in which they

appear in the table description).

d) Column names should be maintained to the left side of each

operator.

Consider a SBQL query

(emp where 20000 < sal and 'Poe' = name).contactno, email

It’s Parse tree and normalised parse tree will be

And the normalized query we get from the normalized parse tree

is:

(emp where name = Poe and sal > 20000).contactno, email

Hence any query which is semantically equal to the following
query (may be written differently)

(emp where 20000 < sal and 'Poe' = name).contactno, email

will get transformed or normalised to

(emp where name = Poe and sal > 20000).contactno,email

It is the normalised query which will be stored in the cache.

Procedure parsetree()

{

1. Find the first "WHERE". This is the root node

2. The tablename before "WHERE" should be the left child node

Also mark the tablename node (MARKED).
3. Find the AND or OR if present in the query if not present goto

step - 4

 3a the condition after the AND or OR should be the right

subtree rooted at operator node.

 3b For each operator node set the value/columnname to its left

as left node & right as right node.
 3c goto step-5

4. The condition after where should be the right child node.

 4.a Look for binary operators and create a node for them. (>, =

etc)

 4 b.The values/columns before and after the binary operator

become the left and right node.

 4 c. If there is a query after the binary operator then do the steps

from 1 again. Till you reach the end.

4. Get the list of columnnames following the).

5. Attach the list of columnnames to the MARKED node.

}

Procedure Normalise ()

{

operatorslist [] = {=,!=,<=,>=,>,<};

read a query

repeat for all the operators in the query

{

// ensures constants lies to the right of operator.
if(columnvalue is to the left of operator)

 swap the left & right side of the operator.

if(operator has on both sides table attributes)

{

 serialize the condition on tablenames in the list of

tables in the database.

}

}

Repeat for each ‘and’ || ‘or’ in the query

{

//occuranceof returns the occurance number of the operator in the
operators list.

if occuranceof (left-side condition operator) > occuranceof (right-

side condition operator)

swap the left and right side conditions

else if occuranceof (left-side condition operator) == occuranceof

(right-side condition operator)
{

//occuranceof returns the occurance number of the column in the

table description.

if (occuranceof (left-side condition columnname) >

occuranceof(right-side condition columnname)

 swap the left and right side conditions

}

}

For list of attributes after each ‘).’

 Rearrange the list of attributes by referring/according

to table description
For I =0 to numberofauxiliarynames do

 Auxiliary-name[i] = “AUX” + I;

}

4.4 Query Decomposition and Rewriting

After normalization phase query is decomposed, if possible, into

one or many simpler candidate sub queries. Query decomposition

is a useful mechanism to speed up evaluating a greater number of

new queries. If we materialize a small independent sub query

instead of a whole complex query, then the probability of reusing

of its results is risen [13]. Because the same query may occur as a

sub query in many other queries, hence reuse of its stored result

will speed up the performance of all those queries and as a whole

of database system.
We have performed execution of the following complex query.

employee where salary < ((employee where name =

'krishna_kant').salary)

The above query is first decomposed into 2 queries

(employee where name = 'krishna_kant').salary) as v -------(1)

employee where salary < v ---------- (2)

The independent inner subquery i.e. (employee where name =

'krishna_kant').salary) as v is normalised first and verified on the

server side (whether cached or not). As the result for this query

was not readily available in cache the query is executed and the

result of the query is stored in cache. The cache manager received
the Cache ID of the query from query cache registry and returns

this ID (Unique Identification Number) to the query optimizer.

Query optimizer reforms the enclosing outer query as employee

where salary < “CACHEDRESULT ID ” + UIN

And then the outer query is executed during which inner query

result is reused. After execution the result was returned to user

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

171

screen and the query “employee where salary <

CACHEDRESULT ID 4” has been cached.

Hence during all this process two queries has been cached i.e.

query (1) and (2). And the query (2) has a cache reference to the

result of query (1). Any subsequent queries which has any parts

of it mapping with any of the above two queries will make reuse
of the stored results.

Hence in our optimization process, decomposition is an approach

using which caching of the query starts with the smallest

independent part of the total query and ends with the caching of

the largest outermost query. Outermost query will have the

reference to result of it’s inner query, inner query will have a

reference to its inner query result and so on.

2.5 Update of cached results
Whenever any of the tables involved in the already

stored query gets updated either by insert/delete/update operation,

the stored result will be out of use or outdated. In this situation to

restore the stored result back again to a useful state, we have to

revaluate the stored query once again and overwrite its outdated

result in the cache memory with a new one. Due to this, Query

caching is not very useful in database systems where database is
frequently updated. Also updation of single table in the database

may affect ‘n’ number of cached results as updated table may be

present in ‘n’ number of cached queries. Hence using effective

algorithms and data structures for efficient updation of the cached

results after database updates, effective searching in the cache

memory to check whether the result is readily available or not,
and better management of the cache memory (as with the

growing number of stored results the overheads for searching into

the cache memory will also increase) are critical issues and is in

the future scope of this paper. For better management of the

cache memory we may adopt the policies like cached queries

which are least frequently used may be deleted from the cache
memory after a specific time interval.

5 CONCLUSION
Based on the experimental results we can state that

Decomposition and Caching techniques in Object Oriented

Queries will result in upto 500% increase in performance and

query output. High performance of these techniques will make

these queries ideal for scenarios when Data Retrieval ratio is very

high when compared to Data Manipulation. This is due to the fact
that the cached results will not have to updated with the latest

data at a frequent interval which in turn will boost the

performance of the database. With more development in these

techniques, the database can be a boon in the areas of

DataWarehousing which work mostly in Data Retrieval mode.

REFERENCES

[1] J.Płodzień, A.Kraken. Object Query Optimization through
Detecting Independent Subqueries Information

Systems 25(8), Pergamon Press, September 2000, pp. 467-490

[2] J.Płodzień, A.Kraken. Object Query Optimization through
Detecting Independent Subqueries Information

Systems 25(8), Pergamon Press, September 2000, pp. 467-490

[3] K. Subieta, Catriel Berri Florean Matthes “A Stack Based

Approach to Query Languages” Institute of Computer Science

Polish Acedemy of Sciences, Report 738 Warszawa Dec 1993.

[4] OMG Object Database Technology Working Group: Next-

Generation Object Database Standardization, OMG White

paper, http://www.omg.org/docs/mars/07-09-13.pdf,

September 27,

[5] Piotr Cybula, Kazimierz Subieta Decomposition of SBQL

Queries for Optimal Result Caching Proceedings of the

Federated Conference on Computer Science and Information

Systems pp. 841–848

[6] Piotr Cybula, Kazimierz Subieta Decomposition of SBQL

Queries for Optimal Result Caching Proceedings of the

Federated Conference on Computer Science and Information

Systems pp. 841–848

[7] P. Cybula, Cached Queries as an Optimization Method in the

Object- Oriented Query Language SBQL. PhD thesis, Institute

of Computer Science, Polish Academy of Sciences, Warsaw,

2010. In Polish.

[8] P. Cybula and K. Subieta, “Query optimization through

cached queries for object-oriented query language SBQL,” in

Proceedings of SOFSEM 2010, vol. 5901 of LNCS, pp. 308–
320, Springer, 2010.

[9] K. Subieta, “Stack-Based Approach (SBA) and Stack-Based

Query Language (SBQL),” http://www.sbql.pl/overview/,
2008.

[10] K. Subieta, C. Beeri, F. Matthes, and J. W. Schmidt, “A Stack

Based Approach to query languages,” in Proc. of 2nd Springer

Workshops in Computing, 1995.

[11] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham,

“Materialized view selection and maintenance using multi-

query optimization,” in Proc. of ACM SIGMOD, pp. 307–
318, 2001.

[12] Piotr Cybula, Kazimierz Subieta Decomposition of SBQL

Queries for Optimal Result Caching Proceedings of the
Federated Conference on Computer Science and Information

Systems pp. 841–848

[13] Piotr Cybula, Kazimierz Subieta Decomposition of SBQL

Queries for Optimal Result Caching Proceedings of the

Federated Conference on Computer Science and Information

Systems pp. 841–848

