
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

400

An Empirical Study: XML Parsing using Various

Data Structures
Ms. V.M.Deshmukh

#
, Dr. G.R.Bamnote

*

#
Computer Science & Engineering Department, Prof. Ram Meghe Institute of Technology & Research,

Badnera-Amravati.
1
msvmdeshmukh@rediffmail.com

*
Computer Science & Engineering Department, Prof. Ram Meghe Institute of Technology & Research,

Badnera-Amravati
2
grbamnote@rediffmail.com

Abstract— XML has become a defacto standard for data

representation and exchange, XML data processing becomes

more and more important for server workloads like web servers

and database servers. One of the most time consuming part is

XML document parsing. Parsing is a core operation performed

before an XML document can be navigated, queried, or

manipulated. Recently, high performance XML parsing has

become a topic of considerable interest In this paper, we are

presenting a performance study of XML data parsing by

evaluating these parsers using time as a parameter. The

proposed design uses four different data structures linked list,

stack, array queue. All these data structures are linear in nature.

We evaluate the data parsing behaviour and study architectural

characteristics. The proposed design analyses the performance of

XML parsing techniques using various data structures. Based on

observed analysis and graphical results it shows that the data

structure based parser is efficient than SAX & DOM parsers..

Keywords— XML, SAX, DOM parsers

I. INTRODUCTION

XML stands for eXtensible Markup Language

(XML). It is a meta-language derived from

Standard Generalized Markup Language (SGML)

and is used to store and exchange structured

information. It was designed to provide flexible

information identification in web documents [1].

However it has come to play an increasingly

important role in representation and exchange of

any kind of structured document because it is

platform-independent, human readable and

extensible. It offers developers great flexibility to

define their own data formats. As commercial

workloads and web services rely more and more on

XML for data storage and communication, XML

data processing becomes an important workload for

web servers, database servers, etc.

Studies have shown that these servers spend a

significant portion of their execution time in XML

data processing [2], especially in XML data parsing.

Data parsing is to convert the input XML document

and break it into small elements. It is one of the

most important portions in XML data processing

because an XML document has to be parsed before

any other operations can be performed. Studies

have shown that data parsing consumes about 30%

of web service applications [3], and has become a

main performance bottleneck in real-world database

servers [4].

The paper is organised as, in section 1 above

introduces XML parsing and data structures. In

section 2 Literature review for XML parsing is

given. Section 3 and 4 proposed evaluation design

and experimental results are discussed. Finally

concluded in section 5.

II. LITERATURE SURVEY

Parsing is a core operation performed before an

XML document can be navigated, queried, or

manipulated. Recently, high performance XML

parsing has become a topic of considerable interest

[8].

A. XML Parsing technologies

There are two technologies for XML data parsing.

One is DOM (Document Object Model) [2] and the

other is SAX (Simple API for XML) [1] . DOM is a

platform and language-neutral interface to represent

XML document as an object-oriented model, which

is usually a tree. Once the tree is built up, it allows

applications to dynamically access and update its

content as well as its structure. On the other hand,

SAX is an event-driven, serial-access mechanism

for accessing XML documents. A SAX parser reads

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

401

an XML document as a stream and invokes call

back functions provided by the application.

Compared to a SAX parser, a DOM parser is much

more complex, and hence, much slower. In DOM

the data retrieval time can be improved by using

cache as a temporary file [5]. After retrieving data

from database, the data is saved at cache. This

model is very efficient compared to old model and

gives better performance for data retrieval. A

different approach described SEDOM [4], based on

a new compression approach and a set of

manipulation algorithms, which enable many DOM

operations to be performed when the data are in the

compressed format, and allows individual parts of a

document to be compressed, decompressed and

manipulated. It can be used to efficiently

manipulate very large XML documents. The SAX

like validating XML parser [13] uses a schema-

specific approach. The schema compiler first

transforms the schema into an intermediate

representation called generalized automata which

abstracts the computations required to parse XML

documents. An implementation method for DTD-

based XML parser is also presented [20] ,according

to the requirements of the XML-based network

management interface testing system and the syntax

and semantic rules of XML. An efficient parsing

framework was developed based on the idea of

placing internal physical pointers within the XML

document that allow the navigation process to skip

large portions of the document during parsing[20].

The research shows how to generate such internal

pointers in a way that optimizes parsing using

constructs supported by the current W3C XML

standard.

The tree representation is equally important in

XML parsing. The technique presented by [21]

allows to represent the tree structure of an XML

document in an efficient way. The representation

exploits the high regularity in XML documents by

compressing their tree structure; the latter means to

detect and remove repetitions of tree patterns.

B. Parallel XML Parsing

Parallel XML parsing (PXP) leverages the

growing prevalence of multicore architectures in all

sectors of the computer market and yields

significant performance improvements. The parallel

XML

parser consists of an initial preparsing phase to

determine the structure of an XML document

followed by a full parallel parse [8] .The results of

preparsing are then used to help partition the XML

document for data parallel processing. The XML

document would be divided into some number of

chunks, and each thread would work on the chunks

independently. As the chunks are parsed, the results

are merged. This parallel approach focuses on

DOM-style parsing where a tree data structure is

created in memory that represents the document.

A hybrid XML SAX parser has been

implemented [21] efficiently. To handle inherent

data dependencies in XML while still allowing

reasonable scalability, a 4-stage software pipeline

with a combination of strictly sequential stages and

stages that can be further data-parallelized within

the stage are utilised. Thus a hybrid between

pipelined parallelism and data parallelism is

proposed. The same research is being extended

further to design a general model. The kernel of the

model is a stealing-based dynamic load balancing

mechanism by which multiple threads are able to

process disjointed parts of the XML document in

parallel with balanced load distribution [7]. The

model also provides a novel mechanism to trace the

stealing actions, and the equivalent sequential

results are obtained by gluing the multiple parallel-

running results together. The basic idea of stealing

based scheme is that every thread works on its own

local task queue and whenever it runs out of the

task it steals the task from other thread’s task queue.

This model uses queue as a data structure.

C. XML Parsing in Databases

XML parsing is generally known to have poor

performance characteristics relative to transactional

database processing. Yet, its potentially fatal impact

on overall database performance is being

underestimated. XML parsing performance is a key

obstacle to a successful XML deployment for real-

world database applications. There is a considerable

share of XML database applications which are

prone to fail at an early and simple road block:

XML parsing [9]. Processing model for storing and

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

402

building XML document in data transfer between

XML and relational database is available [6]. In this

model, a XML document is parsed and its elements

are stored in a single table of database instead, it is

not necessary to read the nodes according to their

hierarchical structure, thus leveraging the workload

of DOM building to memory by the algorithm

called Tree-Branch inter growth. XML can be used

to both store and enforce organizational data

definitions, thus providing a synergetic framework

for leveraging the potential of knowledge

management (KM) tools [18]. XML provides a

flexible markup standard for representing data

models. KM provides IT processes for capturing,

maintaining, and using information. [22] presents a

parallel solution to XML query application through

the combination of parallel XML parsing and

parallel XML query. The XML parsing is based on

arbitrary XML data partition and parallel sub-tree

construction with the final merging procedure.

After XML parsing, the region encodings of XML

data are obtained for relation matrix construction in

that the XPath evaluation in query procedure is

based on relation matrix.

III. PROPOSED WORK

A software program called an XML parser (or an

XML processor) is required to process the XML

document. The XML parser reads the XML

document, checks its syntax, reports any errors and

allows programmatic access to the documents

contents. An XML document is considered well

formed if it is syntactically correct. XML syntax

requires a single root element, a start tag and end

tag for each element, properly nested tags and

attribute values in quotes. Furthermore, XML is

case sensitive, so the proper capitalization must be

used in element and attribute names. A document

that properly conforms to this syntax is well formed

document. Parsers can support the Document

Object Model and Simple API for XML for

accessing a document content programmatically

using languages. A DOM based parser builds a tree

structure containing the XML document’s data in

memory. A SAX based parser processes the

document and generates events (i.e. notification to

the application) when tags, text, comments etc are

encountered. These events return data from the

XML document [8].

 For the design of XML parser, we

focus on XML documents which include an

elements, attributes, and text/values in XML

documents. Although a text can appear anywhere

within the start and end tag of an element, we shall

first assume that it is strictly enclosed by start and

end element tags, e.g., <author>Jack</author>.

 An XML parser can be built by

extracting tokens(e.g. start and end tags) from a

document by reading it from the beginning. With

the help of data structure, we can parse it. For

example, A DOM tree can be built by extracting

tokens (e.g. start and end tags) from a document by

reading it from the beginning. A stack (S) is

maintained and is initially empty. This stack

essentially stores the information of all the

ancestors (in the DOM tree) of the current element

being processed in the document. When a start

element tag say <e> is read, a DOM node (de) is

created for element (e) and any (attribute, value)

pair that is associated with the element is parsed

and stored, by creating the necessary DOM nodes.

If S is not empty, then this implies that (de)’s parent

node has already been created. If (e) encloses text,

then a DOM node for the text is also created and

linked as a “text” child of de. When an end element

tag say </e> is read, e is checked with the top of

stack S. If the element names do not match, then the

parsing is aborted as the document is not well-

formed. Otherwise, the top of S is popped and the

parsing continues. After the last character of the

document is processed, if S is empty, then the entire

DOM tree has been constructed. Otherwise, the

document is not well-formed.

 We serially parse the document with

start tag and end tag. When start tag will be

encountered, we add node in data structure and

when end tag encounter then check the current node

with end tag, if it matches then parsing continues. If

the element names do not match, then the parsing is

aborted as the document is not well-formed. Here

we parse XML document with the help of three

parsers. First is DOM parser, implemented using

java API for XML and generates DOM tree by

calculating time taken to parse the document.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

403

Second is SAX parser, implemented using API for

XML and generates events by calculating time

taken to parse the document. And third, proposed

parser is implemented using java string library with

the help of data structures like Queue, Linked list,

Array and Stack and generates events by calculating

time taken to parse the document.

Fig. 1 Architecture View.

A. Algorithm

1) Get XML file.

2) Initialize variable to calculate time and space.

3) Append “? “ as a delimiter at the end of file.

4) Get start tag using String functions.

5) Add start tag to the Data Structure.

6) Get end tag and check with the last tag in the

Data Structure.

7) If start tag and end tag matches, remove it

from the Data Structure.

8) Repeat steps 4 to 7 until Data Structure

become null.

9) Calculate space and time taken to parse XML

file.

IV. EXPERIMENTAL RESULTS

In this work, XML documents are the input to the

system. We have used SAX parser & DOM Parser.

In implementation, we have implemented data

structure based parser using java string library.

SAX and DOM are implemented using java API for

XML processing and all the elements, attributes,

values are parsed according to the sequence. The

parsed document and the parsing time and space are

shown in text area. SAX and DOM parsers uses

Stack as a data structure to parse the XML

documents.

The proposed design uses different data

structures Linked List, Queue, Stack and Array to

parse XML document. All the elements, attributes,

values are parsed according to the sequence. The

parsed document is shown in text area and also the

parsing time and space is displayed.

After parsing the document using above parsers,

we compare SAX, DOM and data structure based

parser as per the time and space taken to parse

XML document and shows performance evaluation

using graphs.

Fig. 2 Performance Evaluation of XML Parser for Time.

Fig. 2 Performance Evaluation of XML Parser for Space.

V. CONCLUSION

XML DOCUMENT

DIFFERENT PARSER

PERFORM EVALUATION

SAX

PARSER
DOM

PARSER

NEW XML PARSER

STACK

QUEUE ARRAY

LL

XML DATA

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

404

As a language for semi-structured documents,

XML has emerged as the core of the web services

architecture and is playing crucial roles in

messaging systems, databases, and document

processing. XML document must be parsed for

validation. XML parsing is generally known to

have poor performance characteristics relative to

transactional database processing.

Traditionally SAX and DOM parsers are use to

parse the XML document. DOM creates tree

structure of whole XML document in main memory

and parses the document. Unfortunately, DOM has

some penalty over performance characteristics. This

method involves reading the entire file and storing

it in a tree structure, which may be inefficient, slow,

and it can be a strain on resources. One alternative

is SAX. SAX allows you to process a document as

its being read, which avoids the need to wait for all

of it to be stored before taking action. SAX

generates events by fetching contents from

secondary storage during parsing and unfortunately

secondary storage is slower.

Data structure based parser works in main

memory and uses various data structure for parsing.

In the implementation, the proposed parser removes

the elements from document and serially checks if

the document is well formed or not using Linked

list, Queue, Stack and Array simultaneously, which

increases its performance over SAX and DOM

parser.

In future, we can make more efficient XML

parser using data structures and DTD file. DTD file

is used for Validation purpose. We can also

improve the performance by caching result of

highly referenced files.

REFERENCES

[1] W3C, “Extensible markup language (XML).” [Online]. Available:
http://www.w3.org/XML.

[2] W3C, “Document object model (DOM) level 2 core specification.”

[Online]. Available: http://www.w3.org/TR/DOM-Level-2-Core.
[3] Billy B.L. Lim, H. Joseph Wen, “ The impact of next generation XML”

in Journal of Information Management & Computer Security, 10/1,

2002, pp. 33-40, MCB University Press.
[4] Fangju Wang, Jing Li, Hooman Homayounfar, “ A space efficient

XML DOM parser” in Journal of Data & Knowledge
Engineering,Volume 60, Issue 1, January 2007, Pages 185-207.

[5] Yusof Mohd Kamir, Mat Amin Mat Atar, “High Performance of DOM

Technique in XML for Data Retrieval,”in International Conference on
Information and Multimedia Technology IEEE, 2009.

[6] Li Gong,Liu Gao-Feng, Liu Zhong, Ru-Kui. “XML Processing by

Tree-Branch symbiosis algorithm”, in 2nd International Conference on
Future Computer and Communication. IEEE 2010.

[7] Lu W., Dennis Gannon “Parallel XML Processing by Work

Stealing ”,in High performance Distributed Computing archive
Proceedings of the 2007 workshop on Service-Oriented computing

performance. 2008. Monterey Clifornia USA page31-38.

[8] Lu W., Y. Pan, and K. Chiu,” A Parallel Approach to XML Parsing ”in
The 7th International Conference on Grid Computing, IEEE/ACM

2006.

[9] Nicola M. and J. John,” XML Parsing: a Threat to Database
Performance”, in Proc. of the12th International Conference on

Information and Knowledge Management, pages 175–178, 2003.

[10] Power James F., Brian A Malloy.” Program annotation in XML: a
parse-tree based approach”, in Proceedings of the Ninth Working

Conference on Reverse Engineering (WCRE’02) 2002.

[11] Seung Min Kim, Suk I. Yoo, “DOM tree browsing of a very large
XML document: Design and implementation”, in Journal of Systems

and Software, Volume 82, Issue 11, November 2009, Pages 1843-1858.

[12] Hazem M., El-Bakry and Nikos Mastorakis, “Performance Evaluation
of XML Web Services for Real-Time Applications”, in International

Journal of Communications, Issue 2, Volume 3, 2009.

[13] Gao Z., Y. Pan, Y. Zhang, and K. Chiu. ‘A High Performance Schema-
Specific XML Parser”, IEEE Intl. Conf. on e-Science and Grid

Computing, pages 245–252, Dec. 2007.

[14] Lu W., K. Chiu, A. Slominski, , and D. Gannon” A Streaming
Validation Model for SOAP Digital Signature”, in 14th IEEE

International Symposium on High Performance Distributed Computing

(HPDC-14) July 2005.
[15] Engelen Robert A.van, ”Constructing Finite State Automata for High

Performance Web Services”, in Proceedings of the International

Symposium on Web Services(ISWS), 2004.
[16] M. Huhns and M. P. Singh. Service-Oriented Computing: Key

Concepts and Principles, IEEE Internet Computing, 9(1):75–81, Jan.

2005.
[17] R. A. V. Engelen. A framework for service-oriented computing with C

and C++Web service components. ACM transactions on Internet
Technology, 8(3):1–25, 2008.

[18] James R. Otto, James H. Cook and Q.B. Chung, “ Extensible markup

language and knowledge management”, in Journal of Knowledge
Management, Volume 5, No. 3, 2001, pp. 278-284, MCB University

Press.

[19] Fernando Farfán, Vagelis Hristidis, Raju Rangaswami, “2LP double-
lazy XML parser” in Journal of Information Systems, Volume 34,

Issue 1, March 2009, Pages 145-163.

[20] Giorgio Busatto, Markus Lohrey, Sebastian Maneth, “Efficient
memory representation of XML document trees”, in Journal of

Information Systems, Volume 33, Issue 4-5, June-July 2008, Pages

456-474.
[21] Pan Yinfei, Ying Zhang, Kenneth Chiu, “Hybrid Parallelism for XML

SAX Parsing”, in International Conference on Web Services IEEE,

2008.
[22] Chen Rongxin, Weibin Chen, “A Parallel Solution to XML Query

Application“ in the Proceedings of the International Conference on

Computer Science and Information Technology IICCSIT), Vol. 6,
pages 542-546,IEEE, 2010

[23] Kai Ning, Luoming Meng,” Design and Implementation of the DTD-

based XML Parser”, in Proceedings of ICCT 2003.
[24] Kotsakis Evangelos, Klemens Böhm, ”XML Schema Directory: A

Data Structure for XML Data Processing”, in First International

Conference on Web Information Systems Engineering
(WISE’00),Proceedings, pp 62-69, June 19-21, 2000, Hong Kong,

China, IEEE CS Press.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

405

TABLE I

RESULTS OF EXPERIMENTATION

Parser

File size:10KB File size:50KB File size:70KB File size:100KB

Time

(nS)

Space

(KB)

Time

(nS)

Space

(KB)

Time

(nS)

Space

(KB)

Time

(nS)

Space

(KB)

SAX 299083693 4094 6656768001 7295 4765551424 4621 53047291539 7220

DOM 52152063 1454 64048291 1805 586442757 1759 65346592 2154

Linked
List

47022073 3894 495643763 2165 496652337 4394 2453871218 4502

Stack 44546224 1088 399319486 3203 408594395 2070 1530300372 7251

Queue 41595062 1173 386120905 3203 403111464 2070 1529028005 3586

Array 41723920 1173 397318952 3763 404016710 2096 1485246010 7806

