
Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

16

Automatic Test Packet Generation by using
Fault Localization

Amruta S. Solanke1, Sachin B. Jadhav2, Vishakha V. Kharche3
1Post Graduate Student, Department of CE, Padm. Dr. V.B.K.C.O.E., Malkapur, S.G.B.A. University, Maharashtra,

India
 2Asst. Professor, Department of CSE, Padm, Dr. V.B.K.C.O.E., Malkapur, S.G.B.A. University, Maharashtra, India

3Post Graduate Student, Department of CE, Padm. Dr. V.B.K.C.O.E., Malkapur, S.G.B.A. University, Maharashtra,
India

1amrutasolanke@gmail.com, 2sachin.bjadhav@gmail.com, 3 vishakhakharche@gmail.com

Abstract— In today’s era, working on network is complex process
as many users including naïve users, administrators etc. uses tools
like ping and traceroute to debug problems. We have studieda
systematic and automated approach for testing and debugging
networks called An Automatic Test Packet Generation by using
fault localization. ATPG interpret the router configurations and
generates device-independent model. The model is used to
generate a least possible set of test packets to exercise each link in
the network or exercise each rule in the network. The Test packets
are sent periodically and if detected failures trigger a distinct
mechanism to localize faults. ATPG can detect mutually
functional and performance problems. ATPG complements but it
goes beyond previous work in static checking or fault localization.
It is used for testing theliveness of the underlying topology and the
congruence among data plane state and configuration
specification. In this paper the small number of test packets
suffices to test whole rules in these networks. ATPG code and
datasets are available publicly.

Keywords— Network troubleshooting, Test packet generation,
Fault Localization.

I. INTRODUCTION
In networking the process of debugging is gettinga tough task.
Every day, network engineers are wrestling with the router
misconfigurations, fibercuts, software bugs, faulty interfaces,
mislabelled cables, intermittent links, and several other reasons
that are causing networks to misbehave or fail completely.
Network engineers hunt down bugs using the most elementary
tools such as ping, traceroute, SNMP and tcpdump track down
root causes using a combination of accrued perception and
intuition. The network debugging is becoming harder as
networks are getting bigger (The modern data hubs may
contain 10000 switches and a campus network may serve
50000 users, a 100-Gb/s long-haul and that link may
transmit100000 flows) and are getting more complicated(with
over 6000 RFCs, router software is based on the millions of
lines of source code, and the network chips frequently contain
billions of gates)[1]. For this consider an example.
Example 1: Suppose a router starts dropping packets silently
with a faulty line card. An admin, who administers 100 routers,
receives ticket from several unsatisfied users complaining
about connectivity. Firstly Admin examines each router to see

that, if the configuration was changed recently and concludes
that the configuration was untouched [2].
Consequently, admin have to uses his knowledge of topology
to trace the faulty device with ping and traceroute command
tools. Finally, he have to call a colleague to replace the cable.
Generally hardware failures and software bugs are the two
most common causes of network failure, and that problems
detected themselves both as reach ability failures and the
throughput/latency degradation. Our goal is to detect these
types of failures automatically. The main contribution of this
paper is the Automatic Test Packet Generation [ATPG]
framework that generates minimal set of packets to test the
liveness of network automatically that provides support for
topology and also automatically generate packets to test the
performance affirmations such as packet latency.
In Example 1, admin manually decide which packets to send,
which can does by the tool periodically on behalf of admin.
ATPG detects and diagnoses errors by autonomously and
testing all forwarding entries, firewalls rules, and several
packet processing rules in network.
 Network troubleshooting is difficult for following three
reasons. First, the forwarding state which is distributed across
over multiple routers and firewalls and gets defined by their
forwarding tables, filter rules, and additional configuration
parameters. Second, it is hard to observe forwardingstate
because it requires logging into every box in the network
manually. Third, the forwarding state is updating
simultaneously, due to many different programs and protocols.

Figure. 1. Simplified view of Network.

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

17

 Fig. 1 shows simplified view of network states. At the
bottom of the figure the forwarding state used to forward each
packet, containing L2 and L3 forwarding information base
(FIB), access control lists, etc. The forwarding state which is
written by the control plane can be local or remote as in the
SDN model [3] and should properly implements the network
administrator’s policy. Policy examples include: “Security
group X is inaccessible from security Group Y”, “The Use of
OSPF for routing,” and “Video traffic must receive at least 1
Mb/s”. We can consider the controller compiling the policy (A)
into device specification config files (B), which in turn regulate
the forwarding behaviour of every packet (C). To ensure the
network performance as designed, whole three steps should
remain stable at all times, i.e., A = B = C. In adding, the
topology shown at the bottom right in the figure, as well satisfy
a set of liveness properties L. Minimally, L requires that
enough links and nodes that are working; if the control plane
specifies that a laptop can access a server, the desired result can
fail if linksfail. L can also specifies the performance guarantees
that detect flaky links.
Recently, to check that A = B, researchers have proposed tools,
enforces the consistency between policy and configuration[4],
[5], [6], [7]. While these approaches can catch or prevent
software logic errors in the control plane, they are not designed
for identifying liveness failures caused by failed links and
routers, bugs which caused by faulty router
hardware/software/performance problems caused by network
congestion. Such failures requires checking for L and whether
B = C.
 In ATPG, from the device configuration files and FIBs the
test packets are generated algorithmically, for complete
coverage required the minimum number of packets. Test
packets are fed into the network so that each rule is getting
directly exercised from the data plane. Since ATPG treats links
just akin to normal forwarding rules, it guarantees testing of
every link in the network due to full coverage. It also
specialized to generate a minimal set of packets that simply test
every link for checking liveness of network. At least in this
basic form, we feel that ATPG or some similar techniques are
fundamental to the network: Instead of reacting to failures,
many network operators such as Internet2 [8] proactively check
the strength of their network using pings between all pairs of
sources. However, all-pairs ping does not guarantees testing of
all links and has been found to be unscalable for large networks
such as Planet Lab[9].
Organizations can customize ATPG to meet their needs; for
example, they can choose to check only for network
liveness(link cover) or check every rule (rule cover) to make
certain security policy. ATPG can be customized to check
merely for reachability or for performance. ATPG can adapt to
constraints such as requiring test packets from only rare places
in the network or using special routers to generate test packets
from every port. ATPG can also be regulated to allocate more
test packets to exercise more critical rules.

II. LITERATURE REVIEW

 To understand the problems network engineer’s
encounters, and how they troubleshoot them at this time, we
called subscribers to the NANOG1 mailing list for completing
a survey in May–June 2012. Of the 61 who responded, 12
administer small networks (< 1 k hosts), 23 medium networks
(1 k–10 k hosts), 11 large networks (10 k–100 k hosts), and 12
very large networks (> 100 k hosts). All responses are reported
in [10] and are summarized in Table I. The most relevant
findings are as follows.

TABLE I

Ranking Of Symptoms And Causes Reported By
Administrators.

Symptoms: From the most common six symptoms, from that
four cannot be detected by static checks of the type A=B i.e.
throughput/latency, router CPU utilization, intermittent
connectivity, congestion and require ATPG-like dynamic
testing. Even the enduring two failures reachability failure and
security strategy violation might necessitate dynamic testing
for detection of forwarding plane failures.
Causes: By vigorous checking there are two most common
symptoms which are switch and router software bugs and
hardware failure best found.
Cost of troubleshooting: The cost of network debugging the
number of network-related tickets per month and the average
time consumed to resolve a ticket by two metrics from [1].

TABLE II
Tools Used By Network Administrators

Tools: Table II shows that traceroute, ping, and SNMP are the
most popular tools. When the question arises that what an ideal
tool for network debugging would be, 70.7% reported a desire
for automatic test generation for checking performance and
correctness. Some added a aspiration for “long running tests to

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

18

detect jitter or intermittent problems”, “real-time link capacity
observing”, and “observing tools for network state.”
 In summary, our survey is small; it supports the hypothesis
that network administrators have to face complex symptoms
and causes. The debugging cost is important due to the
frequency of problems and the time required solving these
problems. Classical tools such as traceroute and ping are still
heavily used, but an administrator desires more sophisticated
tools.

III. PROPOSED SYSTEM
A. ATPG System:
 Based on the network model, Minimum number of test
packets are generated by ATPG so that every forwarding rule
in the network is exercised and enclosed by at least one test
packet. When an error is detected, ATPG uses a fault
localization algorithm to conclude the links or failing rules.
Fig. 2 is a block diagram of the ATPG system. ATPG goes
through the following steps: The system first collects all the
forwarding state from the network (Step1). ATPG uses Header
Space Analysis to calculate reachability between total test
terminals (Step2). The result is then used by the test packet
selection algorithm to calculate a minimum set of test packets
that can test all rules (Step3). Test terminal send these packets
periodically. If an error is identified, the fault localization
algorithm is invoked to narrow down the cause of the error
(Step 5).

Fig. 2. ATPG system block diagram.

Step 1: Collect all forwarding states: Forwarding table which
usually involves reading the FIBs (Forwarding Information
States), ACLs (Access Control Lists), and config files, as well
as obtaining the topology.
Step 2: Generate All-Pairs Reachability Table: ATPG Start’s
by computing the complete set of packet headers that can be
sent from each test terminal to every other test terminal. For
each and every such header, ATPG finds the complete set of
rules it exercises along the path. To do so, all-pairs reachability
algorithm applied by ATPG as follows:

 1. Header constraints are applied. For example, if traffic can
be sent on VLAN A, the instead of starting with an all- x
header, the VLAN tag bits are set to A.
2. Protocol that match the packet are recorded in packet
history. Hence all-pairs reachability table as shown in table III.

TableIII ALL-PAIRS REACHABILITY TABLE: ALL POSSIBLE HEADERS FROM

EVERY TERMINAL TO EVERY OTHER TERMINAL, ALONG WITH THE RULES

THEY EXERCISE

Header Ingress Port Egress Port Rule History

h1

h2

…
hn

P11

p21
…
pn1

P12

p22
…
pn2

[r11, r12, …]
[r21, r22, …]
…
[rn1, rn2, …]

Therefore total packets matching this class of header will come
across the set of switch rules.
Step 3: Test Packet Generation: We send the set of test
terminal in the network and test packets are receive. Our
objective is to generate a set of test packets to employment
every rule in every switch function, so that any fault will be
observed by at least one test packet. This is similar to software
test groups that try to test every possible branch in a program.
The wider objective can be limited to testing every queue or
every link.

When generating test packets, ATPG must contain two key
Limitations:
1) Port: ATPG must only use test terminals that are available.
2) Header: ATPG essential only use headers that each test
terminal is allowed to send.
Such as, the network administrator might only allow using a
precise set of VLANs. Properly, we have the following
difficult.
Problem (TPS): For a network with the switch functions
{T1,T2..Tn},and the topology function, Define the least set of
test packets to exercise all nearby rules, subject to the port and
header constraints. ATPG chooses test packets using an
procedure we call Test Packet Selection). TPS first finds all
corresponding classes among each pair of obtainable ports .A
corresponding class is a set of packets that exercises the same
combination of rules. It every class to select test packets, lastly
compresses the resulting set of test packets to find the least
covering set.

B. Fault Localization

ATPG sporadically sends a set of test packets. If those packets
fail, ATPG pinpoints the mistake(s) that caused the problem.
1) Fault Model: A rule fails if its detected behavior varies from
its expected behavior. ATPG retains track of where rules fail
using a result function. For a rule, the outcome function is
defined as

Intl. J. Of Computer Science And Applications (IJCSA) EISSN: 0974‐1011
Vol. 9, No.2 , Apr‐June 2016

A Special Issue of 2nd Int. Conf. on Recent Trends & Research in Engineering and Science
By: Padm. Dr. V. B. Kolte College of Engineering & Polytechnic, Malkapur on 28‐29 February, 2016

19

We divide faults into two categories: action faults and match
faults. An action fault occurs when each packet identical to rule
is processed inaccurately. Action faults include unpredicted
packet defeat, a missing rule, congestion, and miswiring. On
the alternative side, match mistakes are not easier to detect
because they merely affect approximately packets matching the
rule: such as example, when a rule matches a header it could
not, or a rule misses a header it could match. We will only
consider action faults because they cover most probable failure
circumstances and can be noticed by using merely one test
packet per rule.

2) Problem 2 (Fault Localization): A list of given (pk0, (pk0),

(pk1, (R (pk1)) … tuples, find all that satisfies ᴲpki,
R (pki, r) =0.

Step 1: Consider the outcomes from sending the regular test
packets. For each passing test it place all rules they exercise
into a set of passing rules, P. Similarly, for every failing test,
place all rules they exercise into a set of potentially failing
rules F. By our statement, one or more than one of the rules F
are in error. So F-P, is a set of suspect rules.
Step 2: ATPG ensuing trims the set of suspect rules by
weeding out properly working rules. ATPG does this using the
reserved packets .ATPG selects reticent packets whose rule
histories contain accurately one rule from the suspect set and
sends these packets. Assume a reserved packet p exercises
individual rule r in the suspect set. If the sending of p fails,
ATPG infers that rule r is in error; if p passes; r is detached
from the suspect set. ATPG repeats this process for every
reserved packet selected in Step 2.
Step 3: In some possibilities, the suspect set is slight enough
after Step 2, which ATPG can dismiss and report the suspect
set. If desired, ATPG can narrow down the suspect set more by
transferring test packets that exercise two or more than that of
the rules in the suspect set by means of the same technique
underlying Step 2. If those test packets pass, ATPG concludes
that none of the exercised rules are in error and eliminates
those rules from the suspect set.
If our Fault Propagation assumption clutches, the technique
shall not miss any faults, and so it will have no false negatives.
False Positives: Note that the localization technique may
present false positives, rules left in the suspect set at the end of
Step 3. Exactly, one or more than one rules in the suspect set
may in fact behave properly. False positives are inevitable in
some possibilities.

When two rules are in sequence and there is no path to exercise
only one of them, we can say the rules are not distinguishable
any packet that exercises one rule shall also exercise the other.
Hence forth, if only one rule fails, we can’t tell which one.
Such as if an ACL rule is monitored immediately by a
forwarding rule that matches the same header, the two rules are
not distinguishable. Notice that if we test terminals before and
after each rule with sufficient test packets, we can differentiate
each rule. Thus, the deployment of test terminals moves test
coverage as well as localization accuracy.

IV. CONCLUSION
The network administrators having a fundamental problem to
test the liveness of a network. They uses the basic tools such as
traceroute and ping. To resolve the problem of automatically
generated test packets for efficient liveness testing requires
techniques an alogous to ATPG. The reachability policy and
performance health can be tested by ATPG. By fault
localization testing ATPG is getting augmented also
constructed using the header space framework. So we hope that
network ATPG will be evenly useful for automated dynamic
testing of production networks.

REFERENCES

[1] Zeng , Kazemian, Varghese,and Nick “Automatic Test Packet
Generation”,VOL. 22, NO. 2, APRIL 2014.

[2] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults
in IP networks,” IEEE/ACM Trans Netw., vol. 14, no. 5, pp. 1092–1103,
Oct. 2006.

[3] S. Shenker, “The future of networking, and the past of protocols,” 2011
[Online].Available:
http://opennetsummit.org/archives/oct11/shenkertue.Pdf.

[4] M. Canini, D.Venzano, P. Peresini, D.Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proc. NSDI, 2012, pp. 10–10.

[5] P. Kazemian, G. Varghese, and N. McKeown, “Header space
analysis:Static checking for networks,” in Proc. NSDI, 2012, pp. 9–9.

[6] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S.
T.King, “Debugging the data plane with Anteater,”
Comput.CommunRev., vol.41, no. 4, pp. 290–301, Aug. 2011.

[7] M.Reitblatt,N.Foster, J. Rexford, C. Schlesinger, and D.Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM, 2012, pp.

323–334.
[8] Internet2, Ann Arbor, MI, USA, “The Internet2 observatory data

collections,”[Online]. Available:
http://www.internet2.edu/observatory/archive/data-collections.html

[9] H. Weather spoon, “All-pairs ping service for PlanetLab ceased,”
2005[Online]. Available: http://lists.planet-lab.org/pipermail/users/2005-
July/001518.html.

[10] “Troubleshooting the network survey,” 2012 [Online].
Available:http://eastzone.github.com/atpg/docs/NetDebugSurvey.pdf

