
International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

216

DATA LEAKAGE DETECTION

Mr. Amol O. Gharpande Prof. Ms. V. M. Deshmukh

Comp. Sci & Engg Dept. Computer. Sci & Engg Dept.

PRMIT&R Badnera PRMIT&R Badnera
amol_gharpande@hotmail.com

Abstract- In both the commercial and defense sectors a

compelling need is emerging for rapid, yet secure,

dissemination of Information. This paper gives review idea

about data leakage detection techniques. A data distributor has

given sensitive data to a set of supposedly trusted agents (third

parties). Some of the data is leaked and found in an

unauthorized place (e.g., on the web or somebody’s laptop).

The distributor must assess the likelihood that the leaked data

came from one or more agents, as opposed to having been

independently gathered by other means. We propose data

allocation strategies (across the agents) that improve the

probability of identifying leakages. These methods do not rely

on alterations of the released data (e.g., watermarks). In some

cases we can also inject “realistic but fake” data records to

further improve our chances of detecting leakage and

identifying the guilty party.

Keywords: Distributor, agent, guilty agent.

1. INTRODUCTION
In the course of doing business, sometimes

sensitive data must be handed over to supposedly trusted

third parties. For example, a hospital may give patient

records to researchers who will devise new treatments.

Similarly, a company may have partnerships with other

companies that require sharing customer data. Another

enterprise may outsource its data processing, so data must

be given to various other companies. We call the owner of

the data the distributor and the supposedly trusted third

parties the agents. Our goal is to detect when the

distributor’s sensitive data have been leaked by agents,

and if possible to identify the agent that leaked the data.

We consider applications where the original sensitive data

cannot be perturbed. Perturbation is a very useful

technique where the data are modified and made “less

sensitive” before being handed to agents. For example,

one can add random noise to certain attributes, or one can

replace exact values by ranges .However, in some cases, it

is important not to alter the original distributor’s data. For

example, if an outsourcer is doing our payroll, he must

have the exact salary and customer bank account numbers.

If medical researchers will be treating patients , they may

need accurate data for the patients. Traditionally, leakage

detection is handled by water marking,e.g., a unique code

is embedded in each distributed copy. If that copy is later

discovered in the hands of an unauthorized party, the

leaker can be identified. Watermarks can be very useful in

some cases, but again, involve some modification of the

original data. Furthermore, watermarks can sometimes be

destroyed if the data recipient is malicious. In this paper,

we study unobtrusive techniques for detecting leakage of a

set of objects or records. Specifically, we study the

following scenario: After giving a set of objects to agents,

the distributor discovers some of those same objects in an

unauthorized place. (For example, the data may be found

on a website, or may be obtained through a legal discovery

process.) At this point, the distributor can assess the

likelihood that the leaked data came from one or more

agents, as opposed to having been independently gathered

by other means. Using an analogy with cookies stolen

from a cookie jar, if we catch Freddie with a single cookie,

he can argue that a friend gave him the cookie. But if we

catch Freddie with five cookies, it will be much harder for

him to argue that his hands were not in the cookie jar. If

the distributor sees “enough evidence” that an agent

leaked data, he may stop doing business with him, or may

initiate legal proceedings.

2. LITERATURE REVIEW
The guilt detection approach we present is related

to the data provenance problem tracing the lineage of S

objects implies essentially the detection of the guilty

agents. It provides a good overview on the research

conducted in this field. Suggested solutions are domain

specific, such as lineage tracing for data warehouses, and

assume some prior knowledge on the way a data view is

created out of data sources. Our problem formulation with

objects and sets is more general and simplifies lineage

tracing, since we do not consider any data transformation

from Ri sets to S. As far as the data allocation strategies

are concerned, our work is mostly relevant to

watermarking that is used as a means of establishing

original ownership of distributed objects. Watermarks

were initially used in images, video, and audio data whose

digital representation includes considerable redundancy,

and other works have also studied marks insertion to

relational data. Our approach and watermarking are

similar in the sense of providing agents with some kind of

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

217

receiver identifying information. However, by its very

nature, a watermark modifies the item being watermarked.

If the object to be watermarked cannot be modified, then a

watermark cannot be inserted. In such cases, methods that

attach watermarks to the distributed data are not

applicable. Finally, there are also lots of other works on

mechanisms that allow only authorized users to access

sensitive data through access control policies. Such

approaches prevent in some sense data leakage by sharing

information only with trusted parties. However, these

policies are restrictive and may make it impossible to

satisfy agent’s requests.

2.1 USE OF FAKE OBJECTS
 The distributor may be able to add fake objects to

the distributed data in order to improve his effectiveness in

detecting guilty agents. However, fake objects may impact

the correctness of what agents do, so they may not always

be allowable. The idea of perturbing data to detect leakage

is not new. However, in most cases, individual objects are

perturbed, e.g., by adding random noise to sensitive

salaries, or adding a watermark to an image. In our case,

we are perturbing the set of distributor objects by adding

fake elements. In some applications, fake objects may

cause fewer problems that perturbing real objects. For

example, say that the distributed data objects are medical

records and the agents are hospitals. In this case, even

small modifications to the records of actual patients may

be undesirable. However, the addition of some fake

medical records may be acceptable, since no patient

matches these records, and hence, no one will ever be

treated based on fake records. Our use of fake objects is

inspired by the use of “trace” records in mailing lists. In

this case, company A sells to company B a mailing list to

be used once (e.g., to send advertisements). Company A

adds trace records that contain addresses owned by

company A. Thus, each time company B uses the

purchased mailing list, A receives copies of the mailing.

These records are a type of fake objects that help identify

improper use of data.

 Fig.1: Leakage problem instances.

The Fig.1 represents four problem instances with the

names EF, EF& , SF an SF& , where E stands for explicit

requests, S for sample requests, F for the use of fake

objects, and F & for the case where fake objects are not

allowed. The distributor may be able to add fake objects to

the distributed data in order to improve his effectiveness in

detecting guilty agents. Since, fake objects may impact the

correctness of what agents do, so they may not always be

allowable. Use of fake objects is inspired by the use of

“trace” records in mailing lists. The distributor creates and

adds fake objects to the data that he distributes to agents.

In many cases, the distributor may be limited in how many

fake objects he can create.

3. ANALYSIS OF PROBLEM
1) We consider applications where the original sensitive

data cannot be perturbed. Perturbation is a very useful

technique where the data is modified and made “less

sensitive” before being handed to agents.

2) However, in some cases it is important not to alter the

original distributor’s data.

3) Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in each

distributed copy.

4) If that copy is later discovered in the hands of an

unauthorized party, the leaker can be identified.

5) Watermarks can be very useful in some cases, but again,

involve some modification of the original data.

6) Furthermore, watermarks can sometimes be destroyed if

the data recipient is malicious.

4. PROPOSED WORK
1) After giving a set of objects to agents, the distributor

discovers some of those same objects in an unauthorized

place.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

218

2) At this point the distributor can assess the likelihood that

the leaked data came from one or more agents, as

opposed to having been independently gathered by other

means.

3) If the distributor sees “enough evidence” that an agent

leaked data, he may stop doing business with him, or may

initiate legal proceedings.

4) In this project we develop a model for assessing the

“guilt” of agents.

5) We also present algorithms for distributing objects to

agents, in a way that improves our chances of identifying

a leaker.

6) Finally, we also consider the option of adding “fake”

objects to the distributed set. Such objects do not

correspond to real entities but appear.

7) If it turns out an agent was given one or more fake

objects that were leaked, hen the distributor can be more

confident that agent was guilty.

5. MODULE DESCRIPTION
5.1 Distributer
A) Login / Registration

This is a module mainly designed to provide the

authority to a user in order to access the other modules of

the project. Here a user can have the accessibility authority

after the registration.

B) Data Transfer

This module is mainly designed to transfer data

from distributor to agents. The same module can also be

used for illegal data transfer from authorized to agents to

other agents.

5.2AGENT
A) Guilt Model Analysis:

This module is designed using the agent – guilt

model. Here a count value (also called as fake objects) is

incremented for any transfer of data occurrence when

agent transfers data. Fake objects are stored in database.

B) Agent-Guilt Model:

This module is mainly designed for determining

fake agents. This module uses fake objects (which is

stored in database from guilt model module) and

determines the guilt agent along with the probability.

6. FILE TRANSFER PROTOCOL
File Transfer Protocol (FTP) is one of the oldest

applications in use on the Internet. First proposed in April

of 1971, it predates TCP/IP, the pair of protocols FTP

needs in order to operate. File Transfer Protocol is

designed to do exactly that, transfer files between a server

and a client. There are many applications which use FTP

to transfer files between computers. To use FTP, you can

start up the FTP program on your machine and connect to

a server. The FTP application you use to connect to the

server is a client, and your client software can connect to

an FTP server running on port 21 on a remote machine.

FTP is included on most of today's operating systems.

7. HOW FTP WORKS
1) FTP creates both a control and a data connection in

order to transfer files. The control connection is based

on telnet and is used to negotiate the parameters for the

data transfer. This is called inactive FTP connection.

2) The client FTP application opens a control connection

to the server on destination port 21, and specifies a

source port as the source to which the FTP server

should respond (using TCP).

3) The FTP server responds on port 21.

4) The FTP server and client negotiate the data transfer

parameters.

5) The FTP server opens a second connection for data on

port 20 to the original client.

6) The client responds on the data port, completing a TCP

connection. Data transfer begins.

7) The server indicates the end of the data transfer

8) Client closes the connection once the data is received.

9) The data connection is closed.

10) The FTP connection is closed.

8. INITIATING FILE TRANSFERS FROM

THE COMMAND LINE

1) On the command line, enter FTP <server name>.

2) Enter your login information if prompted.

3) Set your transfer mode to either 'ascii' or 'binary'

depending upon the type of file you are transferring.

4) You can discover what directory you have connected to

by entering the command 'pwd'.

5) To change directories on the remote machine, enter 'cd'

and the name of the directory.

6) To change directories locally, enter 'lcd' To put a file on

the remote machine, enter PUT and the name of the file.

7) Once the transfer completes, you cen enter 'close' and

then 'quit' ('!' and 'bye' also serve the same function as

quit).

9. PASSIVE MODE
The passive mode behavior of an FTP server:

1) The client opens a connection to the server on TCP port

21 (command channel)

2) The server accepts the connection.

3) The server initiates a connection to the client using port

20 as the source port (for the data channel)

4) The client accepts the connection and acknowledges all

data transfers on port.

International Journal Of Computer Science And Applications Vol. 6, No.2, Apr 2013 ISSN: 0974-1011 (Open Access)

Available at: www.researchpublications.org

NCAICN-2013, PRMITR,Badnera

219

10. RESULTS AND DISCUSSION
1) A data distributor has given sensitive data to a set of

supposedly trusted agents (third parties).

2) Some of the data is leaked and found in an unauthorized

place (e.g., on the web or somebody’s laptop).

3) The distributor must assess the likelihood that the leaked

data came from one or more agents, as opposed to

having been independently gathered by other means.

4) We propose data allocation strategies (across the agents)

that improve the probability of identifying leakages.

5) These methods do not rely on alterations of the released

data (e.g., watermarks). In some cases we can also inject

“realistic but fake” data records to further improve our

chances of detecting leakage and identifying the guilty

party.

6) Our goal is to detect when the distributor’s sensitive

data has been leaked by agents, and if possible to

identify the agent that leaked the data.

11. CONCLUSION
In a perfect world, there would be no need to

hand over sensitive data to agents that may unknowingly

or maliciously leak it. And even if we had to hand over

sensitive data, in a perfect world, we could watermark

each object so that we could trace its origins with absolute

certainty. However, in many cases, we must indeed work

with agents that may not be 100 percent trusted, and we

may not be certain if a leaked object came from an agent

or from some other source since certain data cannot admit

watermarks. On review it is observed that there are various

data leakage detection techniques are available.

REFERENCES.

[1] R. Agrawal and J. Kiernan. Watermarking relational

databases. In VLDB ’02: Proceedings of the 28th international

conference on Very Large Data Bases, pages 155–166. VLDB

Endowment, 2002.

[2] P. Bonatti, S. D. C. di Vimercati, and P. Samarati. An

algebra for composing access control policies. ACM Trans. Inf.

Syst. Secur., 5(1):1–35, 2002.

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A

characterization of data provenance. In J. V. den Bussche and V.

Vianu, editors, Database Theory - ICDT 2001, 8th International

Conference, London, UK, January 4-6, 2001, Proceedings,

volume 1973 of Lecture Notes in Computer Science, pages 316–

330. Springer, 2001.

[4] P. Buneman and W.-C. Tan.Provenance in databases. In

SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 1171–

1173, New York, NY, USA, 2007. ACM.

